6,502 research outputs found

    Integrating heterogeneous distributed COTS discrete-event simulation packages: An emerging standards-based approach

    Get PDF
    This paper reports on the progress made toward the emergence of standards to support the integration of heterogeneous discrete-event simulations (DESs) created in specialist support tools called commercial-off-the-shelf (COTS) discrete-event simulation packages (CSPs). The general standard for heterogeneous integration in this area has been developed from research in distributed simulation and is the IEEE 1516 standard The High Level Architecture (HLA). However, the specific needs of heterogeneous CSP integration require that the HLA is augmented by additional complementary standards. These are the suite of CSP interoperability (CSPI) standards being developed under the Simulation Interoperability Standards Organization (SISO-http://www.sisostds.org) by the CSPI Product Development Group (CSPI-PDG). The suite consists of several interoperability reference models (IRMs) that outline different integration needs of CSPI, interoperability frameworks (IFs) that define the HLA-based solution to each IRM, appropriate data exchange representations to specify the data exchanged in an IF, and benchmarks termed CSP emulators (CSPEs). This paper contributes to the development of the Type I IF that is intended to represent the HLA-based solution to the problem outlined by the Type I IRM (asynchronous entity passing) by developing the entity transfer specification (ETS) data exchange representation. The use of the ETS in an illustrative case study implemented using a prototype CSPE is shown. This case study also allows us to highlight the importance of event granularity and lookahead in the performance and development of the Type I IF, and to discuss possible methods to automate the capture of appropriate values of lookahead

    Effect of multiple transverse modes in self-mixing sensors based on vertical-cavity surface-emitting lasers

    Get PDF
    We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    On electroweak baryogenesis in the littlest Higgs model with T parity

    Full text link
    We study electroweak baryogenesis within the framework of the littlest Higgs model with T parity. This model has shown characteristics of a strong first-order electroweak phase transition, which is conducive to baryogenesis in the early Universe. In the T parity symmetric theory, there are two gauge sectors, viz., the T-even and the T-odd ones. We observe that the effect of the T-parity symmetric interactions between the T-odd and the T-even gauge bosons on gauge-higgs energy functional is quite small, so that these two sectors can be taken to be independent. The T-even gauge bosons behave like the Standard Model gauge bosons, whereas the T-odd ones are instrumental in stabilizing the Higgs mass. For the T-odd gauge bosons in the symmetric and asymmetric phases and for the T-even gauge bosons in the asymmetric phase, we obtain, using the formalism of Arnold and McLerran, very small values of the ratio, (Baryon number violation rate/Universe expansion rate). We observe that this result, in conjunction with the scenario of inverse phase transition in the present work and the value of the ratio obtained from the lattice result of sphaleron transition rate in the symmetric phase, can provide us with a plausible baryogenesis scenario.Comment: 13 pages, 2 figures, published version, references modifie

    The Multi-Colored Hot Interstellar Medium of "The Antennae" Galaxies (NGC 4038/39)

    Full text link
    We report the results of the analysis of the extended soft emission discovered in the Chandra ACIS pointing at the merging system NGC 4038/39 (the Antennae). We present a `multi-color' X-ray image that suggests both extensive absorption by the dust in this system, peaking in the contact region, as well as variations in the temperature of different emitting regions of the hot interstellar medium (ISM). Spectral fits to multi-component thermal emission models confirm this picture and give a first evaluation of the parameters of the hot plasma. We compare the diffuse X-ray emission with radio continuum (6cm), HI, CO, and Hα\alpha images to take a first look at the multi-phase ISM of the Antennae galaxies. We find that the hot (X-ray) and cold (CO) gas have comparable thermal pressures in the two nuclear regions. We also conclude that the displacement between the peak of the diffuse X-ray emission in the north of the galaxy system, towards the inner regions of the northern spiral arm (as defined by Hα\alpha, radio continuum and HI), could result from ram pressure of infalling HI clouds.Comment: Accepted by Ap

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE

    CO2 capture by dry alkanolamines and an efficient microwave regeneration process

    Get PDF
    Removal of acidic gases such as H2S and CO2 is performed during the purification of raw natural gas, most commonly using amine gas treatment. However, this industrially entrenched method is limited by significant shortcomings including low operational capture efficiency, amine pipeline corrosion and a large energy penalty due to the sorbent regeneration process. To address these shortcomings, we have studied the use of perfluorinated silica-stabilized dry alkanolamines (DAf) for CO2 capture. Due to their micronized liquid domains, DAf display high operational CO2 capture efficiency. Further, to minimize energy requirements for sorbent regeneration, microwave-assisted regeneration of the spent DAf sorbent was also studied and shown to decrease the energy requirements by about ten times. In contrast to very recent work, our results show that the use of DAf exhibits extraordinary recyclability, with a negligible decrease in absorption capacity over at least ten absorption–regeneration cycles, indicating the potential of this material for gas treatment applications

    The SISO CSPI PDG standard for commercial off-the-shelf simulation package interoperability reference models

    Get PDF
    For many years discrete-event simulation has been used to analyze production and logistics problems in manufactur-ing and defense. Commercial-off-the-shelf Simulation Packages (CSPs), visual interactive modelling environ-ments such as Arena, Anylogic, Flexsim, Simul8, Witness, etc., support the development, experimentation and visua-lization of simulation models. There have been various attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture (HLA). These are complex and it is quite difficult to assess how a set of models/CSP are actually interoperating. As the first in a series of standards aimed at standardizing how the HLA is used to support CSP distributed simula-tions, the Simulation Interoperability Standards Organiza-tion’s (SISO) CSP Interoperability Product Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) that are in-tended to clearly identify the interoperability capabilities of CSP distributed simulations

    Bubbles and Superbubbles

    Full text link
    An isolated massive star can blow a bubble, while a group of massive stars can blow superbubbles. In this paper, we examine three intriguing questions regarding bubbles and superbubbles: (1) why don't we see interstellar bubbles around every O star? (2) how hot are the bubble interiors? and (3) what is going on at the hot/cold gas interface in a bubble?Comment: 8 page, 5 figures, to appear in the proceedings of "How does the Galaxy work? A Galactic Tertulia with Don Cox and Ron Reynolds", eds Alfaro, Perez & Franc
    corecore